

1

REDEFINITION OF STANDARD EQUATION FOR DISCHARGE COEFFICIENT OF THROAT-TAPPED FLOW NOZZLE

Noriyuki FURUICHI and Yoshiya TERAO

National Institute of Advanced Industrial Science and Technology (AIST) National Metrology Institute of Japan (NMIJ)

> FLOMEKO 2019 June 26-28, 2019, Lisbon, Portugal

Throat-tapped flow nozzle

Major application

Evaluation of steam turbine (ASME PTC 6, IEC 60193 etc.) Feedwater flowrate measurement in nuclear power plant

Discharge coefficient defined in ASME PTC 6

$$C_{\text{PTC6}} = \frac{k_{\text{t}}}{Re_{\text{d}}^{0.2}} \left(1 - \frac{361239}{Re_{\text{d}}}\right)^{0.8}$$

Determined by actual flow calibration. Nominal value = 1.0054

Recent experiments for high Reynolds number

by Furuichi et al. and Dr. Reader-Harris et al.

Previous works by author's

- Discharge coefficient behavior at high Reynolds number
- Influence of the throat-tap diameter
- Static pressure measurement error using wall tap
- Theoretical analysis
- Propose new equations for the discharge coefficient
- Comparison with other facility (with PTB)
- 1) Comparison of high temperature and high Reynolds number water flows between PTB and NMIJ, Furuichi. N., Cordova L., Lederer, T., Terao, Y., *Flow Measurement and Instrumentation*, 52 (2016), 157-162
- 2) Further investigation of discharge coefficient for PTC 6 flow nozzle in high Reynolds number, Furuichi, N., Terao, Y., Nakao, S., Fujita, K., Shibuya, K., *Journal of Engineering for Gas Turbines and Power*, 138 (2016), 041605-1-11
- 3) Static pressure measurement error at a wall tap of a flow nozzle for a wide range of Reynolds number, Noriyuki Furuichi, Yoshiya Terao, *Flow Measurement and Instrumentation*, 46 (2015), pp.103-111
- 4) New Discharge Coefficient of Throat Tap Nozzle Based on ASME Performance Test Code 6 for Reynolds Number From 2.4 × 10⁵ to 1.4 × 10⁷, Furuichi, N, Cheong, KH, Terao Y., Nakao, S., Fujita, K., Shibuya, K., *Journal of Fluid Engineering*, 136(1), 011105 (2013), doi:10.1115/1.4025513
- 5) Re-definition of discharge coefficient of throat-tapped flow nozzle and investigations on influence of geometric parameters, Furuichi, N., Terao, Y., *Flow Measurement and Instrumentation*, 65 (2019), pp.16-21.

Proposed equation for ideal nozzle

 $C_{\rm f} = Cn + e_{\rm Tap}$

C	C _f : Discharge coefficient
C	Cn : Ideal discharge coefficient
e	Tap : Static pressure error 👄 Tap effect
a	: Diameter of throat
a	Tap : Diameter of wall tap
F	Re _d : Reynolds number

	Equation	Reynolds number range
(i)	$C_{\rm f} = 1.0042 - \frac{8.41}{Re_{\rm d}^{0.5}}$	<i>Re</i> _d <1.3×10⁵
(ii)	$C_{\rm f} = 1.0042 - \frac{8.41}{Re_{\rm d}^{0.5}} + (0.2053\ln(Re_{\rm d}) - 2.4344) \frac{d_{\rm Tap}}{d}$	1.3×10⁵< <i>Re</i> d<4.0×10⁵
(iii)	$C_{\rm f} = 1.0042 - \frac{8.41}{Re_{\rm d}^{0.5}} + 0.196 \frac{d_{\rm Tap}}{d}$	4.0×10 ⁵ < <i>Re</i> _d <8.0×10 ⁵
(iv)	$C_{\rm f} = 1.0042 - \frac{0.255}{Re_{\rm d}^{0.2}} \left(1 - \frac{400000}{Re_{\rm d}}\right)^{0.8} + 0.196 \frac{d_{\rm Tap}}{d}$	8.0×10 ⁵ < <i>Re</i> _d <3.0×10 ⁶
(v)	$C_{\rm f} = 1.0042 - \frac{0.255}{Re_{\rm d}^{0.2}} \left(1 - \frac{400000}{Re_{\rm d}}\right)^{0.8} + \left(0.0746\ln(Re_{\rm d}) - 0.9051\right) \frac{d_{\rm Tap}}{d}$	3.0×10 ⁶ < <i>Re</i> _d

Proposed equation for ideal nozzle

Objective

To establish new equations as ISO standard,

\square More detail examinations for d_T/d

□ Influence of upstream-tap diameter

□ Roughness of nozzle surface

□ Influence of upstream condition (flow conditioner)

□ Individuality of manufacturing

Final equations for the throat-tapped flow nozzle are proposed.

Examined parameters of throat-tapped flow nozzle

Pipe diameter D (n	100, 200, 350	
Throat diameter d	50, 99, 165	
Diameter ratio β	арр. 0.5	
Throat-tap diamete	2, 3.5, 4, 5, 6, 7	
d _T /d	0.012 - 0.1	
Upstream-tap diam	2, 4, 5	
Surface	Ra (μm)	0.10, 0.80
roughness	Rt (μm)	0.60, 2.5

Experimental facility

High Reynolds number actual flow facility at NMIJ, AIST (Hi-Reff)

Testing condition

Water temperature : $T=20 \degree C \sim 75 \degree C$ Flowrate : $q=30 \ m^3/h \sim 2500 \ m^3/h$ Reynolds number : $Re_d=5.8 \times 10^4 \sim 1.4 \times 10^7$

Experimental result I

Experimental result II

Upstream-tap effect

Experimental result III

Experimental result IV

Influence of upstream condition

AIST

Experimental result V

Individuality of nozzle manufacturing

- Absolute discharge coefficient value is different.
- Tap effect is not according to the physics.
- However, the trend at high Reynolds number is similar.

Summary of experiments

Proposed equation for ideal nozzle

$$C_{\rm f} = Cn + e_{\rm Tap}$$

	Equation	Reynolds number range
(i)	$C_{\rm f} = 1.0042 - \frac{8.41}{Re_{\rm d}^{0.5}}$	<i>Re</i> _d <1.3×10⁵
(ii)	$C_{\rm f} = 1.0042 - \frac{8.41}{Re_{\rm d}^{0.5}} + (0.2053\ln(Re_{\rm d}) - 2.4344)\frac{d_{\rm Tap}}{d}$	1.3×10 ⁵ < <i>Re</i> _d <4.0×10 ⁵
(iii)	$C_{\rm f} = 1.0042 - \frac{8.41}{Re_{\rm d}^{0.5}} + 0.196\frac{d_{\rm Tap}}{d}$	4.0×10⁵< <i>Re</i> d<8.0×10⁵
(iv)	$C_{\rm f} = 1.0042 - \frac{0.255}{Re_{\rm d}^{0.2}} \left(1 - \frac{400000}{Re_{\rm d}}\right)^{0.8} + 0.196 \frac{d_{\rm Tap}}{d}$	8.0×10 ⁵ < <i>Re</i> _d <3.0×10 ⁶
(v)	$C_{\rm f} = 1.0042 - \frac{0.255}{Re_{\rm d}^{0.2}} \left(1 - \frac{400000}{Re_{\rm d}}\right)^{0.8} + \left(0.0746\ln(Re_{\rm d}) - 0.9051\right) \frac{d_{\rm Tap}}{d}$	3.0×10 ⁶ < <i>Re</i> _d

$$d_{\rm t}/d = 0.024$$

Summary of experiments

Conclusion

- This paper presents experimental discharge coefficient for the several geometric parameters; throat-tap diameter, upstream-tap diameter, roughness of surface of nozzle and flow conditioner.
- The most influence parameter for the discharge coefficient is <u>throat-tap diameter d_T/d and the influence of the other</u> parameters is generally negligible small.
- According to this result, new equations of the discharge coefficient for the throat-tapped flow nozzle is proposed. Although they are separated for five Reynolds number range, all experimental data in NMIJ is <u>within ±0.5%</u> of them.